首页> 外文OA文献 >Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs
【2h】

Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

机译:无向图中动态DFs的近似最优并行算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Depth first search (DFS) tree is a fundamental data structure for solvinggraph problems. The classical algorithm [SiComp74] for building a DFS treerequires $O(m+n)$ time for a given graph $G$ having $n$ vertices and $m$ edges.Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFStree of an undirected graph after an edge/vertex update in $\tilde{O}(n)$ time.However, their algorithm is strictly sequential. We present an algorithmachieving similar bounds, that can be adopted easily to the parallelenvironment. In the parallel model, a DFS tree can be computed from scratch using $m$processors in expected $\tilde{O}(1)$ time [SiComp90] on an EREW PRAM, whereasthe best deterministic algorithm takes $\tilde{O}(\sqrt{n})$ time[SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal(upto polylog n factors deterministic algorithms for maintaining fully dynamicDFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain aDFS tree of an undirected graph in $\tilde{O}(1)$ time per update using $m$processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of sizeO(m) such that for a set of $k$ updates (where $k$ is constant) in the graph,the updated DFS tree can be computed in $\tilde{O}(1)$ time using $n$processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner,nearly optimal (upto polylog n factors) algorithms for maintaining a DFS treein semi-streaming model and a restricted distributed model. These are the firstparallel, semi-streaming and distributed algorithms for maintaining a DFS treein the dynamic setting.
机译:深度优先搜索(DFS)树是解决图形问题的基本数据结构。用于建立DFS树的经典算法[SiComp74]对于具有$ n $个顶点和$ m $个边的给定图$ G $需要$ O(m + n)$的时间。最近,Baswana等人。 [SODA16]提出了一种简单的算法,用于在$ \ tilde {O}(n)$时间内在边/顶点更新之后更新无向图的DFStree。但是,他们的算法严格地是顺序的。我们提出了一种实现相似边界的算法,可以很容易地将其应用于并行环境。在并行模型中,可以使用EREW PRAM上的$ m $处理器以预期的$ \ tilde {O}(1)$时间[SiComp90]从头开始计算DFS树,而最佳确定性算法则采用$ \ tilde {O} (\ sqrt {n})$时间[SiComp90,JAlg93]在CRCW PRAM上。我们的算法可用于开发无向图的最优(多达多对数因子确定性算法,用于维护完全动态DFS和容错DFS。1-并行完全动态DFS:给定任意在线顶点/边缘更新序列,我们可以维护使用EREW PRAM上的$ m $处理器,每次更新$ \ tilde {O}(1)$时间中无向图的aDFS树2-并行容错DFS:可以对无向图进行预处理以构建sizeO的数据结构(m),使得对于图中的一组$ k $更新(其中$ k $是常数),可以使用$ n $ processors在$ \ tilde {O}(1)$时间中计算更新的DFS树此外,我们的全动态DFS算法以无缝的方式提供了用于维护DFS树的半流模型和受限分布式模型的近乎最佳(高达polylog n因子)算法,这是首次并行,半流以及用于在动态设置中维护DFS树的分布式算法。

著录项

  • 作者

    Khan, Shahbaz;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号